The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres.
Version:2.4.1
The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres.
Role | Person | StartDate | StopDate | Note | |
---|---|---|---|---|---|
1. | PrincipalInvestigator | spase://SMWG/Person/Mats.Andre |
EFW: Electric Field and Wave experiment
Information about the Electric Field and Waves (EFW) experiment on the Cluster 2/FM8 (Tango) mission.