HPDE.io

SWEAP SPANe

ResourceID
spase://CNES/Instrument/CDPP-AMDA/PSP/SPE

Description

The SPAN-A module has two ESAs to measure ions and electrons from the ram direction and nadir. SPAN-B consists of a single ESA to measure electrons from the anti-ram direction. SPAN-A is located on the ram direction side of PSP and SPAN-B is on the anti-ram side. Significant savings in mass are realized by combining the electron and ion ESAs, which was a lesson learned from FAST and THEMIS. Electrostatic deflectors extend the narrow planar intrinsic angular field of view, FOV, of each ESA to 240°?120°. Together the SPAN electron sensors provide a nearly 4? sr FOV for electrons only excluding the region of the sky blocked by the heat shield.
The SPAN sensors utilize the classic top-hat hemispherical ESA design developed by UCB (Carlson et al. 1983) that affords a uniform response over a planar 360° FOV. Particles entering the analyzer are selected for energy per charge, E/q, by a voltage applied to the inner hemisphere. This voltage is swept from near zero to several kV to measure ion and electron energies as low as a few eV/q to as high as 30 keV/q thus providing excellent energy coverage and resolution. Angular resolution is provided in one plane by discrete segmented anodes and out of that plane by electrostatic deflectors, resulting in a broad instrumental FOV appropriate for a non-spinning spacecraft like PSP.
Both ion and electron sensors use microchannel plate, MCP, detectors for particle detection, and discrete anodes for MCP charge collection. The electron sensor uses chevron-pair detectors.Pulse-counting electronics for the electron sensors utilize a multi-channel preamplifier ASIC developed by researchers at the Laboratoire de Physique du Plasmas, LPP, for the Solar Orbiter mission.
SPAN-B measures electrons only and is a near duplicate of the SPAN-A e-analyzer as only the anode patterns are different. SPAN-B is mounted in an orthogonal orientation to SPAN-A and it is on the opposite side of the spacecraft. The ability of SWEAP to use the same design for both SPAN-A and SPAN-B electron sensors provides significant savings in design time and analysis.

View XML | View JSON | Edit

Details

Version:2.4.1

Instrument

ResourceID
spase://CNES/Instrument/CDPP-AMDA/PSP/SPE
ResourceHeader
ResourceName
SWEAP SPANe
AlternateName
Solar Probe Analyser (SPAN) electrons
ReleaseDate
2019-11-12 16:00:05Z
Description

The SPAN-A module has two ESAs to measure ions and electrons from the ram direction and nadir. SPAN-B consists of a single ESA to measure electrons from the anti-ram direction. SPAN-A is located on the ram direction side of PSP and SPAN-B is on the anti-ram side. Significant savings in mass are realized by combining the electron and ion ESAs, which was a lesson learned from FAST and THEMIS. Electrostatic deflectors extend the narrow planar intrinsic angular field of view, FOV, of each ESA to 240°?120°. Together the SPAN electron sensors provide a nearly 4? sr FOV for electrons only excluding the region of the sky blocked by the heat shield.
The SPAN sensors utilize the classic top-hat hemispherical ESA design developed by UCB (Carlson et al. 1983) that affords a uniform response over a planar 360° FOV. Particles entering the analyzer are selected for energy per charge, E/q, by a voltage applied to the inner hemisphere. This voltage is swept from near zero to several kV to measure ion and electron energies as low as a few eV/q to as high as 30 keV/q thus providing excellent energy coverage and resolution. Angular resolution is provided in one plane by discrete segmented anodes and out of that plane by electrostatic deflectors, resulting in a broad instrumental FOV appropriate for a non-spinning spacecraft like PSP.
Both ion and electron sensors use microchannel plate, MCP, detectors for particle detection, and discrete anodes for MCP charge collection. The electron sensor uses chevron-pair detectors.Pulse-counting electronics for the electron sensors utilize a multi-channel preamplifier ASIC developed by researchers at the Laboratoire de Physique du Plasmas, LPP, for the Solar Orbiter mission.
SPAN-B measures electrons only and is a near duplicate of the SPAN-A e-analyzer as only the anode patterns are different. SPAN-B is mounted in an orthogonal orientation to SPAN-A and it is on the opposite side of the spacecraft. The ability of SWEAP to use the same design for both SPAN-A and SPAN-B electron sensors provides significant savings in design time and analysis.

Acknowledgement
Acknowledgement to the NASA Parker Solar Probe Mission and the SWEAP team led by J.Kasper for use of data
Contacts
RolePersonStartDateStopDateNote
1.PrincipalInvestigatorspase://SMWG/Person/Justin.C.Kasper
2.ProjectScientistspase://SMWG/Person/Nicola.J.Fox
InformationURL
Name
SWEAP Instruments webpage
URL
Description

SWEAP Instrument Web Page

InstrumentType
ElectrostaticAnalyser
InvestigationName
Parker Solar Probe SWEAP Investigation
ObservatoryID