FPI usually operates in Fast Survey (FS) Mode in the MMS Region Of Interest (ROI) for
the current Mission Phase. Data are taken at burst (30/150 ms for DES/DIS) resolution in this mode. Data are also made
available at survey (4.5 s) resolution. Per mission design, not all burst-resolution data are downlinked, but all sur vey data are downlinked. Planning around calibration activities, avoidance of Earth radiation belts, etc, when possible
, FPI usually operates in Slow Survey (SS) Mode (60 s resolution) outside of ROI. This moments product contains results
from integrating the standard moments of phase-space distributions formed from the indicated data type (DES/DIS burst,
FS or SS). For convenience, some additional parameters are included to augment those most commonly found in a moments
product of this sort, plus time-stamps and other annotation characterizing the state of the instrument system at the in
dicated time.
Version:2.4.1
FPI usually operates in Fast Survey (FS) Mode in the MMS Region Of Interest (ROI) for
the current Mission Phase. Data are taken at burst (30/150 ms for DES/DIS) resolution in this mode. Data are also made
available at survey (4.5 s) resolution. Per mission design, not all burst-resolution data are downlinked, but all sur vey data are downlinked. Planning around calibration activities, avoidance of Earth radiation belts, etc, when possible
, FPI usually operates in Slow Survey (SS) Mode (60 s resolution) outside of ROI. This moments product contains results
from integrating the standard moments of phase-space distributions formed from the indicated data type (DES/DIS burst,
FS or SS). For convenience, some additional parameters are included to augment those most commonly found in a moments
product of this sort, plus time-stamps and other annotation characterizing the state of the instrument system at the in
dicated time.
Role | Person | StartDate | StopDate | Note | |
---|---|---|---|---|---|
1. | PrincipalInvestigator | spase://SMWG/Person/James.L.Burch | |||
2. | PrincipalInvestigator | spase://CNES/Person/CDPP-AMDA/B.Giles |
Web Service to this product using the HAPI interface.
Access to Data via CDPP/AMDA Web application.
Low energy bin: 0 eV - 200 eV.
Pitch-angle bin size: 6 deg. Note that pitch angles are calculated in the spacecraft frame;
i.e., not shifted by the bulk velocity
Mid energy bin: 200 eV - 2 keV.
Pitch-angle bin size: 6 deg. Note that pitch angles are calculated in the spacecraft frame;
i.e., not shifted by the bulk velocity
High energy bin: 2 keV - 30 keV.
Pitch-angle bin size: 6 deg. Note that pitch angles are calculated in the spacecraft frame;
i.e., not shifted by the bulk velocity